© 2018 JETIR March 2018, Volume 5, Issue 3 www.jetir.org (ISSN-2349-5162)

DOMATIC EDGE DOMINATION IN BOOLEAN
FUNCTION GRAPH B(G, L(G), NINC) OF A GRAPH

' S. Muthammai, %S. Dhanalakshmi
! Alagappa, Government Arts and Science college, Karaikudi , Tamil Nadu, India.,
2 Government Arts College for Women (Autonomous), Pudukkottai, Tamil Nadu, India.

Abstract : For any graph G, let V(G) and E(G) denote the vertex set and edge set of G respectively. The Boolean function graph B(G,
L(G), NINC) of G is a graph with vertex set V(G) v E(G) and two vertices in B(G, L(G), NINC) are adjacent if and only if they
correspond to two adjacent vertices of G, two adjacent edges of G or to a vertex and an edge not incident to it in G. For brevity, this graph
is denoted by B;(G). In this paper, Domatic edge domination numbers of Boolean Function Graphs of some standard graphs are
obtained.
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l. INTRODUCTION

Graphs discussed in this paper are undirected and simple graphs. For a graph G, let V(G) and E(G) denote its vertex set and edge set
respectively. A subset D of V(G) is called a dominating set of G if every vertex not in D is adjacent to some vertex in D. The domination
number y(G) of G is the minimum cardinality taken over all dominating sets of G. The open neighborhood N(v) of v in V is the set of
vertices adjacent to v, and the set N[v] = N(v)u{v} is the closed neighborhood of v. An edge e of a graph is said to be incident with the
vertex v if v is an end vertex of e. In this case, we also say that v is incident with e.

A subset F c E is called an edge dominating set of G if every edge not in F is adjacent to some edge in F. The edge domination number
v'(G) of G is the minimum cardinality taken over all edge dominating sets of G. The maximum order of a partition of E into edge dominating
sets of G is called the edge domatic number of G and is denoted by d’(G). The concept of edge domination was introduced by Mitchell and
Hedetniemi [8]. Jayaram [6] studied line (edge) dominating sets and obtained bounds for the line (edge) domination number and obtaind
Nordhaus-Gaddum results for the line domination number. Arumugam and Velammal [1] have discussed edge domination number and edge
domatic number. The complementary edge domination in graphs is studied by Kulli and Soner [7]. For graph theoretic notations and
terminology, we follow Harary [2]. Janakiraman et al., introduced the concept of Boolean function graphs [3 - 5]. For a real x, [ x| denotes
the greatest integer less than or equal to x.

Il. PERIOR RESULTS

Observation 2.1 [ 3]

1. G and L(G) are induced subgraphs of B;(G).

2. Number of wvertices in By(G) is p + q and if di = degg(vi), vieV(G), then the number of edges in B.(G)
is Q(p'z) +1/221£i£pdi2-

3. The degree of a vertex of G in By(G) is g and the degree of a vertex of L(G) e in By(G) is deg.g(e’) +
p - 2. Also if d*(e') is the degree of a vertex e of L(G) in By(G), then 0 < d*(') < p + q - 3. The lower
bound is attained, if G = K, and the upper bound is attained, if G = K, ,, for n > 2.

Theorem 2.2. [9]. v (B1(Py)) =n-1.

Theorem 2.3.[9]. v (B1«(Cy)) =n-1.

Theorem 2.4. [9]. v (B1(Kyy)) = (n+4)/3.

Theorem 2.5. [10]. ¥ (By(P,")) = [37] .
3n

Theorem 2.6. [10]. ¥ (B1(Ca")) = H =n-1.
Theorem 2.7. [ 10]. v (By(Ky, ")) =n+2.
Theorem 2.8. [ 3]. y'(B1(G)) < g+ v'(G).
In this paper, Domatic edge domination number of Boolean Function Graph B(G, L(G), NINC) of some standard graphs are
obtained.

I1l. MAIN RESULTS
In the following domatic edge domination number of B;(P,), B1(C,), Bi(Ky,) and B;(W,) are found.

Theorem 3.1.  For the Path P, on n (n > 4) vertices, d'(B,(P,)) = n-1.

Proof:  Let vy, Vy, ..., V, be the vertices and ey, €53, ..., en.1n be the edges of P, respectively. Then vy, Vs, ..., Vq, €12, €23, ..., €10
eV((B1(P,)) Where e, i1 = (Vi, Vis1), i =1, 2, ..., n -1. By(P,) has 2n-1 vertices and n? - n- 1 edges. y'(By(P,)) =n—1.

Case 1. nisodd

Maximum edge domatic partition of B, (P,,) is given by the sets D;,i=1, 2, ..., n-1, where

Di = {(V1.€is1,i+2), (V2, ei+2n, i;S): oo (V- (i+1), €n-1,n)y (Viein €1,2), (VS-igl, €23), ---» (Vi1 8 i+1), (Vo, €, ie2)}, 1= 1,2, ..., n-3, |D; [=n.

D2 = {(v1, en1,n) 3 ( Uz{(Vzi,VziH)}) U {(Vaa, Va)} L ( UZ{(esi—z, si-1, €3i-1, 3i )}), | D2 |=n-1.
Dot = Ul {(Vaict, Vai)} U (Vi €12) U UR2{(es, 141, €141, 142 )} | Dot [=(30-5) /2.
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where the suffices are integers modulo n. Therefore, d'(B1(P,)) = n-1.

Case 2. niseven

Edge domatic partition of B, (P,,) is given by the sets D;,i=1, 2, ..., n-2, where

Di = {(V1.€is1,i+2), (V2, €iv2, i43)s -+ »(Vi=(i+1), en-1,nn)4, (Vni€12), (Vni+1 €23), -+ -»(Vg, €, i+1), (Vo, st is2)}, =1, 2, ..., n-3. |D; [=n*-3n

n-2

Dn2 = (Vi.€n1,n)} Y (Uz{(Vzi,Vziﬂ)})U (Uz{(esi—z, 3i-1, €3i—1,3i )HY {(n3 n2) Bn2,n0)}, I N=0(mod 4). | Dy | =n-1
n-2 n—4

Dnz ={(V1, €nt, )3 (U 2 {(Vai Vais)}) U (U 2 {(esicz, sio1, €3i-131 )3) A@n2,n1, €n1a)}, if N=2(mod 4). | Dy, |=n-1

Dni = Uinﬁ{(Vzi—L V2i)} U (Vo €12) U UR2{(ey, 141, €iv1, iv2 )}» | Doz | = (3n-4) 12

U D; = E(B1(Py). In Case 1 and Case 2, D' = {D;, D D, ..., D,} is a maximum edge domatic partition of B, (P,) . Hence, d'(By(P,)) =
n-1.

Theorem 3.2 For the cycle C,on n (n> 4) vertices, d'(B1(Cy)) = n.

Proof: Letvy, vy, Vs, ..., v, be the vertices and e;,, €3, ..., €n1, n be the edges in C,, where €1 = (Vi,\Vis), 1=1,2, ...,n =1, ;=
(Vn, V). Then vy, Vo, ..., Vi, €12, €23, --+, €n-1n, €01 €V(B1(Cy)). B1(Ch) has 2n vertices and n? edges. Y'(B1(Cy) =n-1.

Edge domatic partition of B,(C,) is given by the sets D;, i = 1,2, ..., n, where D; = { (V1, €11, i+2), (V2, €is2, i+3)5 --- »(Vn=(i+1), €n-1, )y (Vi €1n), (
Viist, €19), -oos (Vo Bis1, is2), (Vi €is2,i43)}, 1= 1,2, ..., n-2. | Di|=n. .

Di1 = {(vy, V2), (v3, V4)_,éu, (Visa)s (Visn3), (_931, i1, €01, i+2), (Bis2, i43)s (Bina,iva)s - r (€t n 1)}, 1=1,2, ..., (0-2) /2. | Dj|=n-1.

D = {(va, Va)}u ( Ug{(Vm,Vzm)}) U (Uz{(ezi, 2i+1, €2i+1, 2i+2 )}) Y {(€n1 n €10 )}V {(E1n €12)}, ifnisodd. | Dy | =n.
n-2 n-2

Dn={(v1, va)} U (U2 {(v2i v2is1)}) Y (U, 2, {(€2i, 2141, €2i41, 2142 )}) Y (Bin, €12), if nis even. | Dy | =n

iL:D; =E(B4(Cy) and D' = {D; D, Dj ..., D,} is a maximum edge domatic partition of B; (C,) . Hence, d'(B4(Cy)) = n.
Theorem 3.3 For the star Ky, on  (n + 1) vertices d’(B; (Ky,)) = n, where n > 2.
Proof:  Letvy, vy, Vs, ..., Vo 41 be the vertices with v, as the central vertex and e, €13, ..., €041 be the edges in Ky ,, where e juq =
(V1, Vis1),1=2, 3, ..., n. Then vy, Va, ..., Vn, Vps1, €12, €13 -+, €1, n+1 € V(B1(Kyyp)). B1(Kyn) has 2n + 1 vertices and (n(3n - 1))/2 edges.
Y(Bi(Kin) = (n+4)3.
Case 1. nis odd

Edge domatic partition of B;(K) is given by the sets D;,i=1,2, ..., n, and are given by Di, = { (V,, €1;), (V3, €1, i+1), .., (Vn, €1it(n-

2)s (Viet, €1 1), (1, i-0, €11), (Brict, €1, i)y -+ »(€1,ien32)}s i =3, 4y, ntl. | Dia|=n. Dy ={( V1 V), (V1,Va), ...o(VL, Vos1), (B1ns1, €12), (B4, e,
€13), ---» (€1n+1, €1, (n+1)2)} , Where the suffcies are integers modulo nand e; g = €q,.

L:D; = E(By(Kyp) and D’ = {D; D, Ds ..., D,} is @ maximum edge domatic partition of B; (Ky,) . Hence, d'(B1y(Kyyn)) =( n+1-2) +1
=n.
Case 2. niseven
Edge domatic partition of By (K, ) is given by the sets D;, i= 1,2, ..., n and are given by
Diz = { (Va, €11), (V3, €1, i41)s - (Vi €isn-2))s (Ve €1, 11y (1,1, €11), (B1icty €1, i41)s --- 5 (€1, isn22)}> 1=3, 4., (0+4)/2. | Dy | = .
[l)i-l zl{(Vz, e1i), (Va, €1 i+1), -, (Vn, Bis(n-2), (Vinea, €11), (Bt 1), (Bins Brisa)s --- (€1, i1, isn-ay )}, 1 =(n+6)/2, ..., nt1.

I)Fl =n.
Dn = {(V1,V2), (V1,V3), -..s(V1, Vier), (E1ne1, €12), (€1, ne1, €23 -y (€101, €1, m2)}s | D | = n-1.

L1D; = E(By(Ky,) and D' ={D; D, Ds ..., D} is a maximum edge domatic partition of B1 (K1) . Hence, d’'(B1(Kz1n)) =(( n+4)/2) -
2+((n-2)/2)+1=(2n-2+2) /2 =n.
Theorem 3.4 For the Wheel W, on n(n>5) vertices, d'(B; (W) = n.
Proof: Let vy, Vo, V3 ..., V, be the vertices with v; as the central vertexand €;,, €13, ..., €1n, €23, ..., €n-1, n, En2 D€ the edges
in Wy, where €; ix1 = (Vi, Vise), @nd €1 41 = (V1, Vis1), 12,3, ..., n-1, 0= (Vn, Vo) . Then vy, Vo, ..., vy, €12, €13 ..., €1n € V(By(Wp)).
B1(W,) has 2n — 1 vertices and ((n—1) (3n - 4))/2 edges. y'(B1 (W,)) = n— 1. Edge domatic partition of B;(W,) is given by the sets D;, i
=1,2, ..., n, where
Di1 = { (V1, &, i+1), (V2, €is1, i42)5 -+ »(Vi1, €10), (Vi €1,2), ( V3, €1), (1,02, €1n)s (B1, w1, €1, i+n-3), (BLivz, vz, i43)}, 1= 2, 3, ..., n-1. | Diq | =n.
Case 1. nisodd

D1 = {(V1, Vo2 )} (UE{(VZLV_Z;+1)}) U {(Vn, V1), (€12, €20)} U(UE{SL iz, €ir1, is2 )} Y {101, €n00)}. | Do | =n+2.

Dy, = {(Vl:Vn-l)}U{(VZ,Vn)}U(U?:Tl{(vznl,V21+2)}) VU {(ewne20)} U(U;Tl{(em, iv2, €ixz, 1+3)}) Y {(€ na 0y € n)} U {(Brn, €0y, )}
(liggelg nﬁ is even

D1 = {(V1, Vo2 )} UE{(VZi,VzHl)}U{(Vn, V1), (B12, €2n)} UE{(BL i+2, €i+1, i+2 )} Y

n—4

{(e23 €20)} v Ug{(emﬂ, €ir3ia )} - |Dn|=3n/2.
n—4 n-2

Dn = {(ve,Va)} W {(V2vi)} v Uz{(vzHl Vair2)} U {(€1n, €20)} U Uz{(eHl, i+2, €iv2, i+3)F Y {(€2n, €n1, n)} U {(E1n, €01, n)}- | D, | =
n+2.
LD =E(By(W,)and D’ ={D; D, D; ..., D,}is a maximum edge domatic partition of B, (W,) . Hence, d’'(By(W,)) =n.

Theorem: 3.5 For any graph (p,q) graph G, d'(B(G)) > [% .

Proof:  Number of edges in By(G) = q (p-2) + %2 2d;?. But d; > 0.
Therefore, E(B1(G)) >q (p-2). Also, by Theorem [2.8]

Y(B:(G) < a+v(G) <q + 2]

If P is even, then Son(&) » a=2) - _ 24®=2) 54 hence of B, (G)
7' (B1(G)) (q+p/2) (p+2q)

Number of edge dominating sets of B,(G) >

2q(p-2)
(p+2q)
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The

refore, d'(B1(G)) > number of edge dominating sets of B,(G) > [% .

If P is odd, then [g] =D

E(B1

Y(BL(G) — (a+(p-1)/2) (p+2q9-1) —

2
©) o _ae-2) _ 2q(-2) >[2q(p—2)
p+2q

Remark: y'(B.(G)) = p.

IV. CONCLUSION

In this paper, domatic edge domination numbers of Boolean Function Graph B(G, L(G), NINC ) of path, cycle, stars and wheel are

obtained.
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